SQL Server Integration Services vs Cloud Data Fusion

Last Updated:

Our analysts compared SQL Server Integration Services vs Cloud Data Fusion based on data from our 400+ point analysis of ETL Tools, user reviews and our own crowdsourced data from our free software selection platform.

Product Basics

SQL Server Integration Services (SSIS) is a data integration tool built within Microsoft SQL Server. It excels at orchestrating data movement and transformation tasks between diverse sources and destinations, making it ideal for data warehousing, ETL (Extract, Transform, Load) processes, and database management in Windows environments. Users praise its visual workflow editor, robust data transformation capabilities, and seamless integration with other Microsoft tools. Additionally, SSIS offers built-in security features and scalability for handling large datasets. However, its reliance on the Microsoft ecosystem, limited open-source compatibility, and potentially complex learning curve can be drawbacks. Pricing is part of the SQL Server license, ranging from affordable Express editions to more expensive Enterprise versions depending on user needs and server configurations. Overall, SSIS is a powerful and cost-effective option for organizations heavily invested in the Microsoft suite and primarily focused on Windows server environments. For those seeking open-source flexibility or broader platform compatibility, alternative data integration tools may be worth exploring.

Pros:
  • Visual workflow
  • Strong data transformations
  • Microsoft integration
  • Built-in security
  • Scalable for large volumes
Cons:
  • Windows only
  • Limited open source
  • Steep learning curve
  • Pricing with SQL Server
  • Closed-source ecosystem
read more...
Cloud Data Fusion streamlines data integration for businesses by building and managing pipelines that extract, transform, and load data from diverse sources. Its visual interface simplifies data movement for both technical and non-technical users, making it ideal for organizations seeking a user-friendly ETL solution. Key benefits include pre-built transformations, reusable components, and real-time data processing capabilities. Compared to other ETL offerings, users praise its intuitive design, scalability, and ease of collaboration, while acknowledging potential limitations in handling highly complex data transformations. Pricing scales with pipeline usage, offering flexibility for growing data needs.

Pros
  • Visual drag-and-drop
  • Pre-built connectors
  • Collaboration features
  • Scalable infrastructure
  • Real-time processing
Cons
  • Potential cost for large data
  • Limited custom coding
  • Learning curve for setup
  • Complex transformation challenges
  • Troubleshooting can be difficult
read more...
$300 Monthly
Get a free price quote
Tailored to your specific needs
$10 Monthly, Freemium
Free Trial is unavailable →
Get a free price quote
Tailored to your specific needs
Small 
i
Medium 
i
Large 
i
Small 
i
Medium 
i
Large 
i
Windows
Mac
Linux
Android
Chromebook
Windows
Mac
Linux
Android
Chromebook
Cloud
On-Premise
Mobile
Cloud
On-Premise
Mobile

Product Assistance

Documentation
In Person
Live Online
Videos
Webinars
Documentation
In Person
Live Online
Videos
Webinars
Email
Phone
Chat
FAQ
Forum
Knowledge Base
24/7 Live Support
Email
Phone
Chat
FAQ
Forum
Knowledge Base
24/7 Live Support

Product Insights

  • Maximize ROI: Performs complex transformations without needing a staging area. Persists data temporarily to a native raw format file using the file system. 
  • Connect to Data Sources: Draws data from Microsoft SQL Server, IBM DB2, Oracle, HP Vertica, MySQL, MongoDB and OData. Pull data from repositories that can’t be sourced directly like FTP, HTTP, MSMQ, Analysis Services and Server Management Objects (SMO). 
  • Integrate with SAP Products: Natively accesses the application model and relevant metadata in SAP Business Suite offerings. Reads data based on programming languages such as ABAP, IDocs, BAPI, RFC and SAP extractors. 
  • Extend As Needed: Write code to define connection objects, log providers, transforms and tasks. 
  • Maintain Data Quality: Handles data from heterogeneous data sources within the same package. Monitor errors through a variety of logging and auditing options. 
read more...
  • Accelerated Time to Insights: Streamline data preparation and integration processes to quickly access, clean, and deliver actionable data for analysis, leading to faster insights and decision-making.
  • Enhanced Collaboration and Governance: Foster teamwork and maintain data quality standards with a centralized platform that enables shared pipeline creation, version control, and access management.
  • Simplified Data Integration: Empower both technical and non-technical users with a visual, code-free interface that eliminates the need for extensive programming expertise in building and managing ETL pipelines.
  • Reduced Operational Costs: Minimize infrastructure management and maintenance overhead with a fully managed cloud-based solution, allowing resources to focus on strategic data initiatives.
  • Scalability and Flexibility: Handle growing data volumes and evolving business needs seamlessly with a scalable architecture that accommodates both batch and real-time processing.
  • Enhanced Data Quality and Reliability: Implement comprehensive data validation, cleansing, and standardization processes to ensure the accuracy and integrity of data for downstream analysis and decision-making.
  • Improved Data Governance and Compliance: Enforce data security and privacy regulations with built-in controls for access management, data masking, and auditing capabilities.
  • Faster Time to Market: Accelerate the delivery of data-driven products and services by streamlining data preparation and integration, enabling quicker insights and innovation.
  • Empowered Business Users: Democratize data access and analysis by providing a user-friendly platform for self-service data exploration and integration, fostering data-driven decision-making across the organization.
  • Improved Decision Making: Gain a holistic view of business operations and make better-informed decisions based on accurate, integrated, and timely data insights.
read more...
  • Big Data Support: Connects to new, in-demand big data sources like databases, systems, files and unstructured content. Access mainframe sources and captured data changes in real time. Expand cloud support for big data with Microsoft Azure, Impala, Cassandra, OData and Apache Hive.
  • Import/Export Wizard: Move data from a variety of source types to disparate destination types, including text files and other SQL Server instances. Create packages that move data across systems seamlessly, without transformations. 
  • Build Integration Packages: Create and maintain integration packages through the SSIS Designer. Deploy the package and view the execution status at run time. Add functionality to packages through dialog boxes and windows. Configure the development environment through SQL Server Data Tools (SSDT). 
  • Built-in Data Transformations: Provides aggregation, pivot, unpivot, cache transform, fuzzy lookup, data conversion, data mining query and partition processing. Leverage a wide range of transform capabilities like fuzzy logic, data profiling, data and text mining and direct insert to SSAS. 
  • Secure Business Data: Provides threat and vulnerability mitigation, and access control. Sign packages with digital certificates that ensure customers open and run packages only from trusted sources. 
  • Precedence Constraints: Control task runs by defining precedence constraints. Connect tasks to control the workflow and configure to work based on an SSIS expression or the status of the preceding job. 
read more...
  • Visual Drag-and-Drop Interface: Build and manage data pipelines without coding, using a user-friendly interface with pre-built components for data ingestion, transformation, and loading.
  • Extensive Connector Library: Connect to a wide range of data sources, including databases, cloud storage, SaaS applications, and streaming data sources, using over 150+ pre-built connectors.
  • Pre-built Transformations: Streamline data preparation with common transformations like cleansing, filtering, joining, aggregating, and pivoting, easily applied within the visual interface.
  • Real-Time and Batch Processing: Handle both streaming data and large-scale batch processing, enabling real-time analytics and decision-making.
  • Scalable Infrastructure: Dynamically scale resources to accommodate growing data volumes and processing demands, ensuring performance and cost-effectiveness.
  • Collaboration and Version Control: Foster teamwork and maintain pipeline history with features for shared workspaces, version control, and access management.
  • Data Lineage Tracking: Track data movement and transformations throughout the pipeline, enabling data quality auditing, troubleshooting, and compliance.
  • Data Quality and Validation: Ensure data accuracy and consistency with built-in data profiling, validation, and cleansing capabilities.
  • Integration with Google Cloud: Seamlessly integrate with other Google Cloud services like BigQuery, Dataproc, Dataflow, and Cloud Storage for end-to-end data management and analytics.
  • Security and Compliance: Protect sensitive data with enterprise-grade security measures, including access controls, encryption, and auditing.
read more...

Product Ranking

#8

among all
ETL Tools

#41

among all
ETL Tools

Find out who the leaders are

Analyst Rating Summary

90
93
88
100
100
84
76
88
Show More Show More
Data Quality
Data Transformation
Platform Security
Metadata Management
Workflow Management
Data Delivery
Performance and Scalability
Platform Security
Data Transformation
Metadata Management

Analyst Ratings for Functional Requirements Customize This Data Customize This Data

SQL Server Integration Services
Cloud Data Fusion
+ Add Product + Add Product
Data Delivery Data Quality Data Sources And Targets Connectivity Data Transformation Metadata Management Platform Capabilities Workflow Management 88 100 76 100 93 0 91 100 84 88 98 96 86 95 0 25 50 75 100
89%
0%
11%
100%
0%
0%
100%
0%
0%
69%
23%
8%
54%
0%
46%
79%
0%
21%
100%
0%
0%
96%
4%
0%
88%
0%
12%
90%
0%
10%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
86%
0%
14%
80%
20%
0%
90%
0%
10%

Analyst Ratings for Technical Requirements Customize This Data Customize This Data

we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
100%
0%
0%
90%
10%
0%
100%
0%
0%

User Sentiment Summary

Great User Sentiment 503 reviews
Excellent User Sentiment 139 reviews
84%
of users recommend this product

SQL Server Integration Services has a 'great' User Satisfaction Rating of 84% when considering 503 user reviews from 2 recognized software review sites.

92%
of users recommend this product

Cloud Data Fusion has a 'excellent' User Satisfaction Rating of 92% when considering 139 user reviews from 2 recognized software review sites.

n/a
5.0 (2)
4.3 (279)
4.6 (137)
4.1 (224)
n/a

Awards

SelectHub research analysts have evaluated SQL Server Integration Services and concluded it earns best-in-class honors for Data Transformation.

Data Transformation Award

Cloud Data Fusion stands above the rest by achieving an ‘Excellent’ rating as a User Favorite.

User Favorite Award

Synopsis of User Ratings and Reviews

Visual Workflow: Drag-and-drop interface simplifies complex data flows, making integration tasks intuitive and manageable, even for users without extensive coding experience.
Robust Data Transformations: Cleanses, transforms, and validates data to ensure accuracy and consistency before integration, improving data quality and trust in downstream analytics.
Microsoft Integration: Seamlessly integrates with other Microsoft tools and platforms like SQL Server and Azure, streamlining data workflows within existing infrastructure and reducing the need for additional software.
Scalability and Performance: Handles large datasets efficiently with parallel processing and optimization techniques, minimizing processing time and ensuring smooth data integration for growing data volumes.
Built-in Security: Supports encryption, data masking, and role-based access controls for secure data handling and compliance with industry regulations, providing peace of mind and reducing security risks.
Show more
Visual Interface: Build and manage pipelines with a drag-and-drop interface, eliminating the need for extensive coding knowledge.
Scalability: Handle large and complex datasets with ease, seamlessly scaling to meet changing demands.
Integrations: Connect to a wide range of data sources and destinations, both on-premises and in the cloud.
Pre-Built Templates: Streamline development with ready-to-use templates for common ETL tasks, accelerating time to value.
Collaboration: Foster teamwork with features for sharing pipelines and managing access, promoting efficiency and knowledge transfer.
Automation: Schedule and automate pipeline execution, ensuring timely data updates and reducing manual effort.
Security: Leverage Google Cloud's robust security infrastructure for data protection and compliance.
Show more
Limited Open Source: Relies heavily on Microsoft technologies and lacks extensive open-source integrations, potentially restricting customization and community support compared to more open platforms.
Steep Learning Curve: While the visual interface is helpful, mastering complex data flows and transformations can require significant training and experience, especially for users unfamiliar with the platform.
Windows Only: Limited to Windows environments, excluding non-Microsoft operating systems like Linux or macOS, hindering platform flexibility and potentially requiring additional infrastructure investment.
Closed-Source Ecosystem: Limited transparency into internal algorithms and processes can make troubleshooting and debugging complex issues challenging, requiring specialized knowledge or relying on Microsoft support.
Cost Tied to SQL Server: Pricing depends on the chosen SQL Server edition, potentially increasing costs for organizations already invested in other database solutions or needing only basic data integration functionalities.
Show more
Learning Curve: Interface and concepts can be initially challenging for those unfamiliar with data pipelines or Apache Beam.
Cost: Pricing model can become expensive for large-scale or complex deployments, especially with high data volumes.
Debugging: Troubleshooting pipeline errors can be difficult due to limited logging and error messages.
Customization Limits: Reliance on pre-built plugins and connectors can restrict flexibility for highly customized or niche use cases.
Performance: Some users have reported occasional performance slowdowns or job failures, especially with large datasets.
Version Control: Lacks robust built-in version control for pipelines, requiring external tools or manual management.
Show more

User reviews of SQL Server Integration Services paint a contrasting picture. Proponents praise its intuitive visual workflow, robust data transformation capabilities, and seamless integration with the Microsoft ecosystem. This makes it ideal for organizations already invested in Microsoft tools and requiring efficient data movement within Windows environments. The built-in security features and scalability for handling large datasets are further pluses, offering peace of mind and ensuring smooth performance for growing data volumes. However, critics point to its heavy reliance on Microsoft technologies and limited open-source compatibility as major drawbacks. This can restrict customization and community support compared to more open platforms like Talend or Apache Airflow. The steep learning curve and Windows-only limitation can also be hurdles, requiring dedicated training and potentially hindering platform flexibility. Additionally, the closed-source nature can make troubleshooting complex issues challenging. Finally, pricing tied to SQL Server editions may not be cost-effective for organizations needing only basic data integration functionalities or using other database solutions. Ultimately, SQL Server Integration Services shines for its robust data handling, intuitiveness, and Microsoft integration within Windows environments. However, its limited open-source compatibility, steep learning curve, and reliance on SQL Server licensing make it less ideal for organizations seeking greater flexibility, affordability, or platform independence. Carefully weighing your specific needs and resources against its strengths and limitations is crucial before choosing SSIS for your data integration needs.

Show more

Cloud Data Fusion emerges from user reviews as a powerful ETL tool, particularly for those prioritizing ease of use and visual workflow. Its drag-and-drop interface and pre-built templates are praised for accelerating development and reducing the need for coding expertise, making it ideal for ETL beginners or teams with mixed skillsets. This accessibility shines compared to competitors like Fivetran or Stitch, which often require more technical knowledge. However, Cloud Data Fusion's user experience isn't without its bumps. Some find the learning curve steeper than expected, particularly when troubleshooting complex pipelines. Additionally, the pricing structure can become expensive for large-scale deployments, especially compared to open-source options like Airflow. For smaller teams or budget-conscious users, these drawbacks might outweigh the benefits. Where Cloud Data Fusion truly shines is its focus on collaboration and security. Features like pipeline sharing and access control promote teamwork and knowledge transfer, while leveraging Google Cloud's robust security infrastructure is a major selling point for data-sensitive organizations. This focus on collaboration and security differentiates Cloud Data Fusion from competitors, making it a compelling choice for teams working on critical data pipelines. Ultimately, Cloud Data Fusion's strengths and weaknesses paint a picture of a versatile ETL tool that excels in ease of use, collaboration, and security. While its learning curve and pricing might deter some, its user-friendly interface and focus on specific needs make it a strong contender for teams seeking a streamlined and secure ETL solution.

Show more

Screenshots

Top Alternatives in ETL Tools


AWS Glue

Azure Data Factory

Cloud Data Fusion

Dataflow

DataStage

Fivetran

Hevo

IDMC

Informatica PowerCenter

InfoSphere Information Server

Integrate.io

Oracle Data Integrator

Pentaho

Qlik Talend Data Integration

SAP Data Services

SAS Data Management

Skyvia

SQL Server

Talend

TIBCO Cloud Integration

Head-to-Head Comparison

WE DISTILL IT INTO REAL REQUIREMENTS, COMPARISON REPORTS, PRICE GUIDES and more...

Compare products
Comparison Report
Just drag this link to the bookmark bar.
?
Table settings