AWS Glue vs DataStage

Last Updated:

Our analysts compared AWS Glue vs DataStage based on data from our 400+ point analysis of ETL Tools, user reviews and our own crowdsourced data from our free software selection platform.

DataStage Software Tool

Product Basics

AWS Glue is a fully managed, event-driven serverless computing platform that extracts, cleanses and organizes data for insights. Automatic code generation ensures citizen data scientists and power users can create and schedule integration workflows. An event-driven architecture enables setting triggers to launch data integration processes.

A common data catalog with automatic schema generation ensures data is unique and easily accessible. With streaming data integration, it catalogs assets from datastores like Amazon S3, making it available for querying with Amazon Athena and Redshift Spectrum. Developers can access readymade endpoints to edit and test code.

Pros
  • Serverless & Scalable
  • Easy Visual Workflow
  • Built-in Data Connectors
  • Pay-per-Use Pricing
  • AWS Ecosystem Integration
Cons
  • Complex Transformations
  • Limited On-Premise Data
  • Python & Scala Only
  • Potential Cost Overruns
  • AWS Lock-in Concerns
read more...
DataStage assists businesses with data integration through automated extraction, transformation, and loading (ETL) processes. It excels in handling high data volumes from diverse sources, making it ideal for organizations managing complex data landscapes. Key benefits include improved data quality, streamlined analytics, and enhanced decision-making. Popular features involve visual job design, pre-built transformations, and parallel processing capabilities. User experiences within the ETL context praise DataStage's reliability, scalability, and robust job scheduling functionalities. However, its licensing model based on named user seats or processing power can be costlier compared to subscription-based alternatives. Ultimately, DataStage shines for businesses prioritizing robust ETL capabilities and data volume scalability.

Pros
  • Visual job design
  • Scalable performance
  • Robust data handling
  • Reliable data integration
  • Strong job scheduling
Cons
  • Complex to learn
  • Costly licensing model
  • Limited cloud integration
  • Potential performance issues
  • Lacks automation features
read more...
$0.44/M-DPU-Hour
Free Trial is unavailable →
Get a free price quote
Tailored to your specific needs
$1.75/Capacity Unit-Hour (CUH)
Get a free price quote
Tailored to your specific needs
Small 
i
Medium 
i
Large 
i
Small 
i
Medium 
i
Large 
i
Windows
Mac
Linux
Android
Chromebook
Windows
Mac
Linux
Android
Chromebook
Cloud
On-Premise
Mobile
Cloud
On-Premise
Mobile

Product Assistance

Documentation
In Person
Live Online
Videos
Webinars
Documentation
In Person
Live Online
Videos
Webinars
Email
Phone
Chat
FAQ
Forum
Knowledge Base
24/7 Live Support
Email
Phone
Chat
FAQ
Forum
Knowledge Base
24/7 Live Support

Product Insights

  • Effortless Data Integration: Streamline data movement across diverse sources like databases, applications, and cloud storage with pre-built connectors and automated schema discovery.
  • Simplified Data Preparation: Clean, transform, and enrich data with a visual drag-and-drop interface and built-in transformations, eliminating the need for complex coding.
  • Serverless Scalability: Forget infrastructure management! Glue seamlessly scales to handle massive data volumes without upfront provisioning or ongoing maintenance.
  • Cost-Effective Flexibility: Pay-per-use pricing based on actual resource consumption makes Glue ideal for both small and large data pipelines, optimizing your costs.
  • Seamless AWS Integration: Leverage the power of the AWS ecosystem! Glue effortlessly integrates with S3, Redshift, and other AWS services, creating a unified data pipeline within your existing infrastructure.
  • Improved Data Accessibility: Deliver prepared data to data lakes, data warehouses, and analytics platforms, democratizing access for data scientists, analysts, and business users.
  • Enhanced Collaboration: Share data pipelines and workflows with other users and teams, fostering collaboration and streamlining data-driven workflows.
  • Centralized Data Catalog: Maintain a single source of truth for your data assets with Glue Data Catalog, ensuring data consistency and discoverability.
  • Continuous Monitoring and Optimization: Track job performance, identify bottlenecks, and optimize your pipelines for efficiency with built-in monitoring and logging tools.
  • Future-Proof Data Infrastructure: Stay ahead of the curve with Glue's serverless architecture and cloud-native approach, adapting to your evolving data needs with ease.
read more...
  • Enhanced Data Integrity: Streamlines data cleansing, transformation, and validation, ensuring accuracy and consistency.
  • Faster Insights: Simplifies data preparation for analytics and reporting, accelerating time-to-value.
  • Automated Data Workflows: Automates repetitive ETL tasks, freeing up resources for higher-value activities.
  • Handles High Data Volumes: Efficiently processes large and complex datasets, enabling scalability for future growth.
  • Connects Diverse Data Sources: Integrates data from various sources, including relational databases, flat files, and cloud applications.
  • Improved Data Lineage: Provides clear traceability of data flow, ensuring compliance and data security.
  • Adapts to Evolving Needs: Offers a flexible platform to adapt to changing data requirements and business needs.
read more...
  • Console: Discover, transform and make available data assets for querying and analysis. Builds complex data integration pipelines; handles dependencies, filters bad data and retries jobs after failures. Monitor jobs and get task status alerts via Amazon Cloudwatch. 
  • Data Catalog: Gleans and stores metadata in the catalog for workflow authoring, with full version history. Search and discover desired datasets from the data catalog, irrespective of where they are located. Saves time and money – automatically computes statistics and registers partitions with a central metadata repository. 
  • Automatic Schema Discovery: Creates metadata automatically by gleaning schema, quality and data types through built-in datastore crawlers and stores it in the Data Catalog. Ensure up-to-date assets – run crawlers on a schedule, on-demand or based on event triggers. Manage streaming data schemas with the Schema Registry. 
  • Event-driven Architecture: Move data automatically into data lakes and warehouses by setting triggers based on a schedule or event. Extract, transform and load jobs with a Lambda function as soon as new data becomes available. 
  • Visual Data Prep: Prepare assets for analytics and machine learning through Glue DataBrew. Automate anomaly filtering, convert data to standard formats and rectify invalid values with more than 250 pre-designed transformations – no need to write code. 
  • Materialized Views: Create a virtual table from multiple different data sources by using SQL. Copies data from each source data store and creates a replica in the target datastore as a materialized view. Ensures data is always up-to-date by monitoring data in source stores continuously and updating target stores in real time. 
read more...
  • Visual Job Design: Drag-and-drop interface for creating and managing ETL workflows.
  • Pre-Built Transformations: Library of common data transformations to simplify complex tasks.
  • Parallel Processing: Distributes data processing across multiple servers for faster performance.
  • Data Quality Tools: Built-in capabilities to cleanse, validate, and profile data.
  • Metadata Management: Centralized repository for managing data definitions and lineage.
  • Scalability: Handles increasing data volumes and complexity efficiently.
  • Security: Protects sensitive data with encryption and access controls.
  • Integration with Other Tools: Interoperability with various data sources, targets, and BI tools.
  • Cloud Deployment: Available as a cloud-based solution for flexibility and scalability.
read more...

Product Ranking

#9

among all
ETL Tools

#22

among all
ETL Tools

Find out who the leaders are

Analyst Rating Summary

88
91
100
97
92
97
62
70
Show More Show More
Data Delivery
Performance and Scalability
Platform Capabilities
Platform Security
Workflow Management
Metadata Management
Performance and Scalability
Platform Capabilities
Platform Security
Data Delivery

Analyst Ratings for Functional Requirements Customize This Data Customize This Data

AWS Glue
DataStage
+ Add Product + Add Product
Data Delivery Data Quality Data Sources And Targets Connectivity Data Transformation Metadata Management Platform Capabilities Workflow Management 100 92 62 90 96 100 100 97 97 70 94 100 100 96 0 25 50 75 100
100%
0%
0%
90%
10%
0%
85%
8%
7%
92%
8%
0%
36%
0%
64%
68%
0%
32%
88%
0%
12%
92%
4%
4%
90%
0%
10%
100%
0%
0%
100%
0%
0%
100%
0%
0%
100%
0%
0%
90%
0%
10%

Analyst Ratings for Technical Requirements Customize This Data Customize This Data

100%
0%
0%
100%
0%
0%
100%
0%
0%
100%
0%
0%

User Sentiment Summary

Great User Sentiment 165 reviews
Great User Sentiment 208 reviews
85%
of users recommend this product

AWS Glue has a 'great' User Satisfaction Rating of 85% when considering 165 user reviews from 3 recognized software review sites.

85%
of users recommend this product

DataStage has a 'great' User Satisfaction Rating of 85% when considering 208 user reviews from 3 recognized software review sites.

4.0 (46)
4.0 (69)
4.4 (109)
4.4 (104)
3.9 (10)
4.2 (35)

Awards

SelectHub research analysts have evaluated AWS Glue and concluded it earns best-in-class honors for Workflow Management.

Workflow Management Award

we're gathering data

Synopsis of User Ratings and Reviews

Cost-Effective & Serverless: Pay only for resources used, eliminates server provisioning and maintenance
Simplified ETL workflows: Drag-and-drop UI & auto-generated code for easy job creation, even for non-programmers
Data Catalog: Unified metadata repository for seamless discovery & access across various data sources
Flexible Data Integration: Connects to diverse data sources & destinations (S3, Redshift, RDS, etc.)
Built-in Data Transformations: Apply pre-built & custom transformations within workflows for efficient data cleaning & shaping
Visual Data Cleaning (Glue DataBrew): Code-free data cleansing & normalization for analysts & data scientists
Scalability & Performance: Auto-scaling resources based on job needs, efficient Apache Spark engine for fast data processing
Community & Support: Active user community & helpful AWS support resources for problem-solving & best practices
Show more
Efficient Handling of Large Datasets: Parallel processing capabilities enable DataStage to distribute tasks across multiple servers, significantly speeding up the processing of large datasets.
Robust Error Handling and Logging: Users appreciate the built-in error handling mechanisms and logging features for identifying and troubleshooting issues effectively.
Data Quality Tools and Lineage Tracking: DataStage offers a range of data quality tools and transformers, along with staging tables and lineage tracking, to ensure data consistency and traceability.
Flexible Scheduling and Monitoring: Users find the Job Conductor's flexibility in scheduling jobs, as well as the real-time monitoring dashboards and email alerts, to be valuable for managing ETL workflows.
Extensive Connectivity Options: The ability to seamlessly integrate with various databases, cloud platforms, and enterprise applications through built-in and third-party adapters is a key advantage for many users.
Show more
Limited Customization & Control: Visual interface and pre-built transformations may not be flexible enough for complex ETL needs, requiring manual coding or custom Spark jobs.
Debugging Challenges: Troubleshooting Glue jobs can be complex due to limited visibility into underlying Spark code and distributed execution, making error resolution time-consuming.
Performance Limitations for Certain Workloads: Serverless architecture may not be optimal for latency-sensitive workloads or large-scale data processing, potentially leading to bottlenecks.
Vendor Lock-in & Portability: Migrating ETL workflows from Glue to other platforms can be challenging due to its proprietary nature and lack of open-source compatibility.
Pricing Concerns for Certain Use Cases: Pay-per-use model can be expensive for long-running ETL jobs or processing massive datasets, potentially exceeding budget constraints.
Show more
Steep Learning Curve: Users often cite the complex interface and extensive features as having a steep learning curve, requiring dedicated training and experience to master.
Debugging Challenges: Troubleshooting errors in complex DataStage jobs can be time-consuming, as the debugging tools can be limited and intricate to navigate.
Potential Performance Issues: While parallel processing is a strength, inefficient job design or resource constraints can lead to performance bottlenecks, requiring careful optimization.
Licensing Costs: The licensing model can be seen as expensive, especially for large-scale deployments or cloud-based environments.
Limited Cloud Integration: While connectivity options exist, native integration with cloud platforms and services could be more seamless, as some users find it challenging to leverage cloud resources effectively within DataStage.
Show more

User reviews of AWS Glue paint a picture of a powerful and user-friendly ETL tool for the cloud, but one with limitations. Praise often centers around its intuitive visual interface, making complex data pipelines accessible even to non-programmers. Pre-built connectors and automated schema discovery further simplify setup, saving users time and effort. Glue's serverless nature and tight integration with the broader AWS ecosystem are also major draws, offering seamless scalability and data flow within a familiar environment. However, some users find Glue's strength in simplicity a double-edged sword. For complex transformations beyond basic filtering and aggregation, custom scripting in Python or Scala is required, limiting flexibility for those unfamiliar with these languages. On-premise data integration is another pain point, with Glue primarily catering to cloud-based sources. This leaves users seeking hybrid deployments or integration with legacy systems feeling somewhat stranded. Cost also arises as a concern. Glue's pay-per-use model can lead to unexpected bills for large data volumes or intricate pipelines, unlike some competitors offering fixed monthly subscriptions. Additionally, Glue's deep integration with AWS can create lock-in anxieties for users worried about switching cloud providers in the future. Overall, user reviews suggest Glue shines in cloud-based ETL for users comfortable with its visual interface and scripting limitations. Its scalability, ease of use, and AWS integration are undeniable strengths. However, for complex transformations, on-premise data needs, or cost-conscious users, alternative tools may offer a better fit.

Show more

User opinions on DataStage paint a contrasting picture. On the one hand, it earns praise for its sheer power and versatility. Its parallel processing muscles tackle massive datasets with ease, while its robust error handling and data quality tools keep pipelines flowing smoothly. Integration with diverse data sources, from legacy databases to cloud platforms, is another major plus, making it a one-stop shop for complex ETL needs. These strengths are especially valuable for large enterprises with intricate data landscapes. However, DataStage's complexity can be a double-edged sword. Its feature-rich interface and steep learning curve can intimidate newcomers, and troubleshooting intricate jobs can be a puzzle. Users also point to occasional performance hiccups, highlighting the need for careful optimization under heavy workloads. Additionally, while cloud connectivity exists, some find it less seamless compared to native cloud-based ETL tools, which might not be ideal for organizations prioritizing cloud agility. When compared to competitors, DataStage shines in its scalability and feature depth. For handling massive data volumes and complex transformations, it stands out. However, for smaller-scale needs or organizations prioritizing ease of use and native cloud integration, lighter-weight ETL options might be more appealing. Ultimately, the choice boils down to individual priorities and project complexity. DataStage remains a powerful beast, but acknowledging its learning curve and potential cloud limitations is crucial for a balanced evaluation.

Show more

Screenshots

Top Alternatives in ETL Tools


Azure Data Factory

Cloud Data Fusion

Dataflow

DataStage

Fivetran

Hevo

IDMC

Informatica PowerCenter

InfoSphere Information Server

Integrate.io

Oracle Data Integrator

Pentaho

Qlik Talend Data Integration

SAP Data Services

SAS Data Management

Skyvia

SQL Server

SQL Server Integration Services

Talend

TIBCO Cloud Integration

Head-to-Head Comparison

WE DISTILL IT INTO REAL REQUIREMENTS, COMPARISON REPORTS, PRICE GUIDES and more...

Compare products
Comparison Report
Just drag this link to the bookmark bar.
?
Table settings