AWS Glue vs Dataflow

Last Updated:

Our analysts compared AWS Glue vs Dataflow based on data from our 400+ point analysis of ETL Tools, user reviews and our own crowdsourced data from our free software selection platform.

Product Basics

AWS Glue is a fully managed, event-driven serverless computing platform that extracts, cleanses and organizes data for insights. Automatic code generation ensures citizen data scientists and power users can create and schedule integration workflows. An event-driven architecture enables setting triggers to launch data integration processes.

A common data catalog with automatic schema generation ensures data is unique and easily accessible. With streaming data integration, it catalogs assets from datastores like Amazon S3, making it available for querying with Amazon Athena and Redshift Spectrum. Developers can access readymade endpoints to edit and test code.

Pros
  • Serverless & Scalable
  • Easy Visual Workflow
  • Built-in Data Connectors
  • Pay-per-Use Pricing
  • AWS Ecosystem Integration
Cons
  • Complex Transformations
  • Limited On-Premise Data
  • Python & Scala Only
  • Potential Cost Overruns
  • AWS Lock-in Concerns
read more...
Dataflow, a streaming analytics software, ingests and processes high-volume, real-time data streams. Imagine it as a powerful pipeline continuously analyzing incoming data, enabling you to react instantly to insights. It caters to businesses needing to analyze data in motion, like financial institutions tracking stock prices or sensor-driven applications monitoring equipment performance. Dataflow's key benefits include scalability to handle massive data volumes, flexibility to adapt to various data sources and analysis needs, and unified processing for both batch and real-time data. Popular features involve visual interface for building data pipelines, built-in machine learning tools for pattern recognition, and seamless integration with other cloud services. Compared to similar products, user experiences highlight Dataflow's ease of use, cost-effectiveness (pay-per-use based on data processed), and serverless architecture, eliminating infrastructure management overheads. However, some users mention limitations in customizability and occasional processing delays for complex workloads.

Pros
  • Easy to use
  • Cost-effective
  • Serverless architecture
  • Scalable
  • Flexible
Cons
  • Limited customization
  • Occasional processing delays
  • Learning curve for complex pipelines
  • Could benefit from more built-in templates
  • Dependency on other cloud services
read more...
$0.44/M-DPU-Hour
Free Trial is unavailable →
Get a free price quote
Tailored to your specific needs
$1/250GB of Processed Data
Get a free price quote
Tailored to your specific needs
Small 
i
Medium 
i
Large 
i
Small 
i
Medium 
i
Large 
i
Windows
Mac
Linux
Android
Chromebook
Windows
Mac
Linux
Android
Chromebook
Cloud
On-Premise
Mobile
Cloud
On-Premise
Mobile

Product Assistance

Documentation
In Person
Live Online
Videos
Webinars
Documentation
In Person
Live Online
Videos
Webinars
Email
Phone
Chat
FAQ
Forum
Knowledge Base
24/7 Live Support
Email
Phone
Chat
FAQ
Forum
Knowledge Base
24/7 Live Support

Product Insights

  • Effortless Data Integration: Streamline data movement across diverse sources like databases, applications, and cloud storage with pre-built connectors and automated schema discovery.
  • Simplified Data Preparation: Clean, transform, and enrich data with a visual drag-and-drop interface and built-in transformations, eliminating the need for complex coding.
  • Serverless Scalability: Forget infrastructure management! Glue seamlessly scales to handle massive data volumes without upfront provisioning or ongoing maintenance.
  • Cost-Effective Flexibility: Pay-per-use pricing based on actual resource consumption makes Glue ideal for both small and large data pipelines, optimizing your costs.
  • Seamless AWS Integration: Leverage the power of the AWS ecosystem! Glue effortlessly integrates with S3, Redshift, and other AWS services, creating a unified data pipeline within your existing infrastructure.
  • Improved Data Accessibility: Deliver prepared data to data lakes, data warehouses, and analytics platforms, democratizing access for data scientists, analysts, and business users.
  • Enhanced Collaboration: Share data pipelines and workflows with other users and teams, fostering collaboration and streamlining data-driven workflows.
  • Centralized Data Catalog: Maintain a single source of truth for your data assets with Glue Data Catalog, ensuring data consistency and discoverability.
  • Continuous Monitoring and Optimization: Track job performance, identify bottlenecks, and optimize your pipelines for efficiency with built-in monitoring and logging tools.
  • Future-Proof Data Infrastructure: Stay ahead of the curve with Glue's serverless architecture and cloud-native approach, adapting to your evolving data needs with ease.
read more...
  • Reduce TCO: Manage seasonal and spiky task overloads by autoscaling resources as per the task load. Reduce batch-processing costs by using advanced job scheduling and shuffling techniques. 
  • Go Serverless: Do away with operational overhead from data engineering tasks. Allow teams to focus on coding, instead of managing server clusters. 
  • Integrate All Data: Replicates data from Google Cloud Storage into BigQuery, PostgreSQL or Cloud Spanner. Ingest data changes from MySQL, SQL Server and Db2.
  • Drive Analytics with AI: Build ML-powered data pipelines through support for TensorFlow Extended (TFX). Enables predictive analytics, fraud detection, real-time personalization and more. 
read more...
  • Console: Discover, transform and make available data assets for querying and analysis. Builds complex data integration pipelines; handles dependencies, filters bad data and retries jobs after failures. Monitor jobs and get task status alerts via Amazon Cloudwatch. 
  • Data Catalog: Gleans and stores metadata in the catalog for workflow authoring, with full version history. Search and discover desired datasets from the data catalog, irrespective of where they are located. Saves time and money – automatically computes statistics and registers partitions with a central metadata repository. 
  • Automatic Schema Discovery: Creates metadata automatically by gleaning schema, quality and data types through built-in datastore crawlers and stores it in the Data Catalog. Ensure up-to-date assets – run crawlers on a schedule, on-demand or based on event triggers. Manage streaming data schemas with the Schema Registry. 
  • Event-driven Architecture: Move data automatically into data lakes and warehouses by setting triggers based on a schedule or event. Extract, transform and load jobs with a Lambda function as soon as new data becomes available. 
  • Visual Data Prep: Prepare assets for analytics and machine learning through Glue DataBrew. Automate anomaly filtering, convert data to standard formats and rectify invalid values with more than 250 pre-designed transformations – no need to write code. 
  • Materialized Views: Create a virtual table from multiple different data sources by using SQL. Copies data from each source data store and creates a replica in the target datastore as a materialized view. Ensures data is always up-to-date by monitoring data in source stores continuously and updating target stores in real time. 
read more...
  • Pipeline Authoring: Build data processing workflows with ML capabilities through Google’s Vertex AI Notebooks and deploy with the Dataflow runner. Design Apache Beam pipelines in a read-eval-print-loop (REVL) workflow. 
    • Templates: Run data processing tasks with Google-provided templates. Package the pipeline into a Docker image, then save as a Flex template in Cloud Storage to reuse and share with others. 
  • Streaming Analytics: Join streaming data from publish/subscribe (Pub/Sub) messaging systems with files in Cloud Storage and tables in BigQuery. Build real-time dashboards with Google Sheets and other BI tools. 
  • Workload Optimization: Automatically partitions data inputs and consistently rebalances for optimal performance. Reduces the impact of hot keys on pipeline functioning. 
    • Horizontal Autoscaling:  Automatically chooses and reallocates the number of worker instances required to run the job. 
    • Task Shuffling: Moves pipeline tasks out of the worker VMs into the backend, separating compute from state storage. 
  • Security: Turn off public IPs; secure data with a customer-managed encryption key (CMEK). Mitigate the risk of data exfiltration by integrating with VPC Service Controls. 
  • Pipeline Monitoring: Monitor job status, view execution details and receive result updates through the monitoring or command-line interface. Troubleshoot batch and streaming pipelines with inline monitoring. Set alerts for exceptions like stale data and high system latency. 
read more...

Product Ranking

#9

among all
ETL Tools

#15

among all
ETL Tools

Find out who the leaders are

Analyst Rating Summary

88
94
100
93
92
78
62
92
Show More Show More
Data Delivery
Performance and Scalability
Platform Capabilities
Platform Security
Workflow Management
Data Transformation
Metadata Management
Platform Security
Workflow Management
Data Delivery

Analyst Ratings for Functional Requirements Customize This Data Customize This Data

AWS Glue
Dataflow
+ Add Product + Add Product
Data Delivery Data Quality Data Sources And Targets Connectivity Data Transformation Metadata Management Platform Capabilities Workflow Management 100 92 62 90 96 100 100 93 78 92 100 100 0 100 0 25 50 75 100
100%
0%
0%
80%
20%
0%
85%
8%
7%
58%
25%
17%
36%
0%
64%
86%
0%
14%
88%
0%
12%
100%
0%
0%
90%
0%
10%
100%
0%
0%
100%
0%
0%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
100%
0%
0%
100%
0%
0%

Analyst Ratings for Technical Requirements Customize This Data Customize This Data

100%
0%
0%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
100%
0%
0%
100%
0%
0%

User Sentiment Summary

Great User Sentiment 165 reviews
Great User Sentiment 106 reviews
85%
of users recommend this product

AWS Glue has a 'great' User Satisfaction Rating of 85% when considering 165 user reviews from 3 recognized software review sites.

86%
of users recommend this product

Dataflow has a 'great' User Satisfaction Rating of 86% when considering 106 user reviews from 3 recognized software review sites.

4.0 (46)
4.1 (31)
4.4 (109)
4.4 (59)
3.9 (10)
4.2 (16)

Awards

SelectHub research analysts have evaluated AWS Glue and concluded it earns best-in-class honors for Workflow Management.

Workflow Management Award

SelectHub research analysts have evaluated Dataflow and concluded it earns best-in-class honors for Data Transformation and Workflow Management.

Data Transformation Award
Workflow Management Award

Synopsis of User Ratings and Reviews

Cost-Effective & Serverless: Pay only for resources used, eliminates server provisioning and maintenance
Simplified ETL workflows: Drag-and-drop UI & auto-generated code for easy job creation, even for non-programmers
Data Catalog: Unified metadata repository for seamless discovery & access across various data sources
Flexible Data Integration: Connects to diverse data sources & destinations (S3, Redshift, RDS, etc.)
Built-in Data Transformations: Apply pre-built & custom transformations within workflows for efficient data cleaning & shaping
Visual Data Cleaning (Glue DataBrew): Code-free data cleansing & normalization for analysts & data scientists
Scalability & Performance: Auto-scaling resources based on job needs, efficient Apache Spark engine for fast data processing
Community & Support: Active user community & helpful AWS support resources for problem-solving & best practices
Show more
Ease of use: Users consistently praise Dataflow's intuitive interface, drag-and-drop pipeline building, and visual representations of data flows, making it accessible even for those without extensive coding experience.
Cost-effectiveness: Dataflow's pay-as-you-go model is highly appealing, as users only pay for the compute resources they actually use, aligning costs with data processing needs and avoiding upfront infrastructure investments.
Serverless architecture: Users appreciate Dataflow's ability to automatically scale resources based on workload, eliminating the need for manual provisioning and management of servers, reducing operational overhead and streamlining data processing.
Scalability: Dataflow's ability to seamlessly handle massive data volumes and fluctuating traffic patterns is highly valued by users, ensuring reliable performance even during peak usage periods or when dealing with large datasets.
Integration with other cloud services: Users find Dataflow's integration with other cloud services, such as storage, BigQuery, and machine learning tools, to be a significant advantage, enabling the creation of comprehensive data pipelines and analytics workflows within a unified ecosystem.
Show more
Limited Customization & Control: Visual interface and pre-built transformations may not be flexible enough for complex ETL needs, requiring manual coding or custom Spark jobs.
Debugging Challenges: Troubleshooting Glue jobs can be complex due to limited visibility into underlying Spark code and distributed execution, making error resolution time-consuming.
Performance Limitations for Certain Workloads: Serverless architecture may not be optimal for latency-sensitive workloads or large-scale data processing, potentially leading to bottlenecks.
Vendor Lock-in & Portability: Migrating ETL workflows from Glue to other platforms can be challenging due to its proprietary nature and lack of open-source compatibility.
Pricing Concerns for Certain Use Cases: Pay-per-use model can be expensive for long-running ETL jobs or processing massive datasets, potentially exceeding budget constraints.
Show more
Limited customization: Some users express constraints in tailoring certain aspects of Dataflow's behavior to precisely match specific use cases, potentially requiring workarounds or compromises.
Occasional processing delays: While generally efficient, users have reported occasional delays in processing, especially with complex pipelines or during periods of high data volume, which could impact real-time analytics.
Learning curve for complex pipelines: Building intricate Dataflow pipelines can involve a steeper learning curve, especially for those less familiar with Apache Beam concepts or distributed data processing principles.
Dependency on other cloud services: Dataflow's seamless integration with other cloud services is also seen as a potential drawback by some users, as it can increase vendor lock-in and limit portability across different cloud platforms.
Need for more built-in templates: Users often request a wider range of pre-built templates and integrations with external data sources to accelerate pipeline development and streamline common use cases.
Show more

User reviews of AWS Glue paint a picture of a powerful and user-friendly ETL tool for the cloud, but one with limitations. Praise often centers around its intuitive visual interface, making complex data pipelines accessible even to non-programmers. Pre-built connectors and automated schema discovery further simplify setup, saving users time and effort. Glue's serverless nature and tight integration with the broader AWS ecosystem are also major draws, offering seamless scalability and data flow within a familiar environment. However, some users find Glue's strength in simplicity a double-edged sword. For complex transformations beyond basic filtering and aggregation, custom scripting in Python or Scala is required, limiting flexibility for those unfamiliar with these languages. On-premise data integration is another pain point, with Glue primarily catering to cloud-based sources. This leaves users seeking hybrid deployments or integration with legacy systems feeling somewhat stranded. Cost also arises as a concern. Glue's pay-per-use model can lead to unexpected bills for large data volumes or intricate pipelines, unlike some competitors offering fixed monthly subscriptions. Additionally, Glue's deep integration with AWS can create lock-in anxieties for users worried about switching cloud providers in the future. Overall, user reviews suggest Glue shines in cloud-based ETL for users comfortable with its visual interface and scripting limitations. Its scalability, ease of use, and AWS integration are undeniable strengths. However, for complex transformations, on-premise data needs, or cost-conscious users, alternative tools may offer a better fit.

Show more

Dataflow, a cloud-based streaming analytics platform, garners praise for its ease of use, scalability, and cost-effectiveness. Users, particularly those new to streaming analytics or with limited coding experience, appreciate the intuitive interface and visual pipeline building, making it a breeze to get started compared to competitors that require more programming expertise. Additionally, Dataflow's serverless architecture and pay-as-you-go model are highly attractive, eliminating infrastructure management burdens and aligning costs with actual data processing needs, unlike some competitors with fixed costs or complex pricing structures. However, Dataflow isn't without its drawbacks. Some users find it less customizable than competing solutions, potentially limiting its suitability for highly specific use cases. Occasional processing delays, especially for intricate pipelines or high data volumes, can also be a concern, impacting real-time analytics capabilities. Furthermore, while Dataflow integrates well with other Google Cloud services, this tight coupling can restrict portability to other cloud platforms, something competitors with broader cloud compatibility might offer. Ultimately, Dataflow's strengths in user-friendliness, scalability, and cost-effectiveness make it a compelling choice for those new to streaming analytics or seeking a flexible, cost-conscious solution. However, its limitations in customization and potential processing delays might necessitate exploring alternatives for highly specialized use cases or mission-critical, real-time analytics.

Show more

Screenshots

Top Alternatives in ETL Tools


Azure Data Factory

Cloud Data Fusion

Dataflow

DataStage

Fivetran

Hevo

IDMC

Informatica PowerCenter

InfoSphere Information Server

Integrate.io

Oracle Data Integrator

Pentaho

Qlik Talend Data Integration

SAP Data Services

SAS Data Management

Skyvia

SQL Server

SQL Server Integration Services

Talend

TIBCO Cloud Integration

Related Categories

Head-to-Head Comparison

WE DISTILL IT INTO REAL REQUIREMENTS, COMPARISON REPORTS, PRICE GUIDES and more...

Compare products
Comparison Report
Just drag this link to the bookmark bar.
?
Table settings