Our analysts compared SAS Viya vs IBM Watson Studio based on data from our 400+ point analysis of Big Data Analytics Tools, user reviews and our own crowdsourced data from our free software selection platform.
Analyst Rating
User Sentiment
among all Big Data Analytics Tools
SAS Viya has a 'great' User Satisfaction Rating of 85% when considering 203 user reviews from 3 recognized software review sites.
SelectHub research analysts have evaluated SAS Viya and concluded it deserves the award for the Best Overall Big Data Analytics Tools available today and earns best-in-class honors for Augmented Analytics and Computer Vision and Internet of Things (IoT).
SAS Viya is an AI-powered data management and visual analytics platform with a robust, scalable architecture. All users who reviewed data source connectivity said that it connects to multiple sources and integrates easily with business applications, giving a seamless user experience. With fast in-memory processing of big data sets, it leverages the power of R to enable visual statistics. All users who mentioned predictive analysis said that it enables automated forecasting through what-if scenarios, goal-seeking, text mining and decision trees. Citing ease of use, all users say that the platform is intuitive and enables easy data modeling and self-service visual analytics. All users who mentioned support said that they are responsive and knowledgeable. Around 71% of the users who comment on its functionality say that it is a robust, scalable and flexible platform that enables visualization and analysis of business data, though some users say visual statistics need improvement. On the flip side, all users who review its cost say that the tool is expensive. In summary, SAS Viya is an analytics tool that provides data management, visualization and AI-powered analytics to enterprises for improved decision making, though small organizations and startups might find it cost-prohibitive.
User reviews of IBM Watson Studio provide valuable insights into its strengths and weaknesses. The platform is lauded for its advanced analytics capabilities, allowing users to conduct in-depth data analysis and modeling. Collaboration features are appreciated for enabling effective teamwork, fostering knowledge sharing among data scientists, analysts, and stakeholders. AutoAI is a standout feature, automating machine learning tasks and making it accessible to users with varying skill levels. Users find the data visualization tools helpful for creating compelling visualizations that communicate insights effectively. Model deployment within the platform simplifies the transition from development to production environments. On the downside, complexity is cited as a drawback, particularly for newcomers to data science. Resource demands for handling large datasets can be challenging for organizations with limited computational resources. The platform's effectiveness is highly dependent on data quality, which can pose issues with inaccurate or incomplete data. Some users note challenges in interpreting highly complex machine learning models, especially in regulated industries where model transparency is crucial. Integration and customization efforts may be complex and require advanced expertise. In comparison to similar products, IBM Watson Studio is often seen as a robust contender, offering a comprehensive suite of data science and machine learning tools. However, the learning curve and resource requirements may be factors for consideration. User reviews reflect a mix of praise for its capabilities and challenges in mastering its advanced functionalities.
WE DISTILL IT INTO REAL REQUIREMENTS, COMPARISON REPORTS, PRICE GUIDES and more...