SAP HANA vs H2O.ai

Last Updated:

Our analysts compared SAP HANA vs H2O.ai based on data from our 400+ point analysis of Big Data Analytics Tools, user reviews and our own crowdsourced data from our free software selection platform.

SAP HANA Software Tool

Product Basics

SAP HANA is the in-memory database for SAP’s Business Technology platform with strong data processing and analytics capabilities that reduce data redundancy and data footprint, while optimizing hardware and IT operational needs to support business in real time. Available on-premise, in the cloud and as a hybrid solution, it performs advanced analytics on live transactional data to display actionable information.

With an in-memory architecture and lean data model that helps businesses access data at the speed of thought, it serves as a single source of all relevant data. It integrates with a multitude of systems and databases, including geo-spatial mapping tools, to give businesses the insights to make KPI-focused decisions.
read more...
H2O.ai is a cutting-edge machine learning platform known for its advanced automation and scalability. It empowers organizations to harness the power of artificial intelligence and predictive analytics. Key features include AutoML, which streamlines the machine learning process, and a rich library of advanced algorithms. H2O.ai offers benefits such as enhanced predictive accuracy, model interpretability, and flexible deployment options, catering to a diverse range of industries. Its open-source foundation fosters collaboration, while its comprehensive ecosystem allows users to customize and extend its capabilities. While it's praised for its efficiency and support for large datasets, users may encounter a learning curve when navigating its sophisticated features.
read more...
$972/Capacity Unit, Usage-Based
Get a free price quote
Tailored to your specific needs
$6,900 Annually
Get a free price quote
Tailored to your specific needs
Small 
i
Medium 
i
Large 
i
Small 
i
Medium 
i
Large 
i
Windows
Mac
Linux
Android
Chromebook
Windows
Mac
Linux
Android
Chromebook
Cloud
On-Premise
Mobile
Cloud
On-Premise
Mobile

Product Assistance

Documentation
In Person
Live Online
Videos
Webinars
Documentation
In Person
Live Online
Videos
Webinars
Email
Phone
Chat
FAQ
Forum
Knowledge Base
24/7 Live Support
Email
Phone
Chat
FAQ
Forum
Knowledge Base
24/7 Live Support

Product Insights

  • Database Management: Reduces operational complexity through the use of a single database that allows data to be stored without a predefined structure. Provides data structure flexibility to application developers. Joins this data with many other data types with full interoperability. 
  • Build Business Solutions: The Business Function Library delivers pre-built functions that developers link at the database kernel level to build powerful business solutions. 
  • Geo-spatial Analysis: Stores spatial data and enables geographical data processing to drive location-specific business application development. 
  • Deploy Anywhere: Deploy on-premise, multi-cloud or go hybrid. Set up on traditional servers, pre-configured appliances, the HANA Enterprise Cloud or partner clouds including AWS and Microsoft Azure. Extend on-premise solutions to the cloud smoothly during any phase of the project. 
  • Predictive Analytics and Machine Learning: Supports transactional processing through machine learning and data analysis in real time. Take action before or as events happen to improve results and boost productivity. 
  • Smart Data Access: Connect virtually to remote, externally supported databases. Stores only the metadata of the database objects as a virtual table in the local database schema. Access data from the remote database in real time, irrespective of its location. 
  • Reduced Cost of Ownership: Mitigates hardware costs through a reduced data footprint made possible by a compression algorithm and lean data structure. 
read more...
  • Enhanced Predictive Accuracy: H2O.ai's advanced algorithms and machine learning capabilities enable organizations to achieve higher predictive accuracy in various applications. This leads to more informed decision-making and improved outcomes.
  • Scalability: One of the standout benefits of H2O.ai is its scalability. It can seamlessly handle both small and large datasets, making it suitable for businesses of all sizes. This scalability ensures that the system remains efficient as data volumes grow.
  • Automated Machine Learning (AutoML): H2O.ai simplifies the machine learning process with AutoML. This feature automates tasks such as feature engineering, model selection, and hyperparameter tuning, allowing data scientists to focus on higher-level tasks and reducing the barrier to entry for those new to machine learning.
  • Interpretability: Understanding machine learning models is crucial for trust and compliance. H2O.ai provides tools and methods for model interpretability, making it easier to explain model predictions and meet regulatory requirements in industries like finance and healthcare.
  • Efficiency: With H2O.ai, organizations can significantly reduce the time and resources required to develop and deploy machine learning models. This increased efficiency accelerates time-to-value for data-driven initiatives.
  • Open Source: H2O.ai embraces open source principles, making it accessible to a wide community of users and developers. This fosters innovation and collaboration, leading to continuous improvements in the platform.
  • Flexible Deployment Options: H2O.ai offers flexibility in deploying models. Users can choose to deploy models in cloud environments, on-premises, or even at the edge, ensuring that the solution aligns with their specific infrastructure and security requirements.
  • Support for Diverse Data Sources: H2O.ai supports data integration from a variety of sources, including structured and unstructured data, ensuring that organizations can leverage their entire data ecosystem for predictive analytics.
  • Comprehensive Ecosystem: H2O.ai provides a comprehensive ecosystem with various tools and integrations, allowing users to extend its functionality and integrate it seamlessly into their existing workflows and technologies.
read more...
  • Data Integration: Captures any type of data — structured or unstructured — from database transactions, applications and streaming data sources. Ingests part of a data set or the complete data set into its native architecture for ready access. 
  • Capture and Replay: Record complex database transactions and then replay them on another device. Test on a non-production system while using production transactions, on a hosted instance, or in the cloud. 
  • Graph Data Processing: Combines its built-in graph engine with the in-memory relational database. Makes graph processing of relational tables easy to learn and use. 
  • SAP HANA Cockpit: Configure and manage HANA instances and applications through a single console interface. Easily schedule all backup jobs and monitor the system for immediate visibility of potential blockers. Integrate with other applications for workload management and security. 
  • Flexible Querying: Choose from a variety of semantics structures to query data in the database memory through a flexible algorithm. 
  • In-memory Architecture: Analyze insights in real time to monitor business KPIs and generate forecast trends. Access data quicker than with conventional databases via its in-memory database. 
  • Data Compression: Compresses data by up to 11 times and stores it in columnar structures for high-performance read and write operations. Saves storage space and provides faster data access for search and complex calculations. 
  • Parallel Processing: Performs basic calculations, such as joins, scans and aggregations in parallel, leveraging column-based data structures. Processes data quicker for distributed systems. 
  • Real-time Analysis: Queries transactional data directly as it is added in real-time. Leverages its inbuilt data processing algorithm to read and write data to a column storage table at high speeds. Acquire total visibility over information while it is being analyzed and make on-the-spot, incisive decisions. 
  • Role-based Permissions: Maintain data integrity across the organization — assign data access based on each team member’s role. 
read more...
  • AutoML: H2O.ai's AutoML functionality automates the end-to-end machine learning process. It handles everything from data preprocessing to model selection and hyperparameter tuning, making machine learning accessible to a broader range of users.
  • Scalability: H2O.ai's platform is highly scalable, capable of handling both small and large datasets with ease. This ensures that organizations can work with data of varying sizes, accommodating growth and evolving needs.
  • Interpretability: Model interpretability is crucial for understanding how and why a model makes predictions. H2O.ai provides tools and techniques for explaining complex machine learning models, enhancing transparency and trust.
  • Efficiency: H2O.ai streamlines the machine learning workflow, reducing the time and resources required to develop and deploy models. This efficiency accelerates the delivery of data-driven insights and solutions.
  • Open Source: H2O.ai embraces an open-source philosophy, fostering collaboration and innovation. The platform is built on open-source technologies, allowing users to contribute to its development and benefit from a thriving community.
  • Flexible Deployment: Users can deploy models generated with H2O.ai in a variety of environments, including cloud, on-premises, and edge computing. This flexibility ensures that the solution aligns with an organization's specific infrastructure and security requirements.
  • Data Source Compatibility: H2O.ai supports diverse data sources, including structured and unstructured data, enabling organizations to leverage their entire data ecosystem for machine learning projects.
  • Comprehensive Ecosystem: H2O.ai offers a comprehensive ecosystem of tools and integrations that enhance its functionality. Users can extend and customize the platform to integrate seamlessly into their existing workflows and technology stack.
  • Advanced Algorithms: The platform includes a rich set of advanced machine learning algorithms, empowering data scientists and analysts to tackle complex problems and extract valuable insights from their data.
  • Model Management: H2O.ai provides robust model management capabilities, allowing users to monitor, update, and deploy models effectively. This feature ensures that models remain relevant and accurate over time.
read more...

Product Ranking

#13

among all
Big Data Analytics Tools

#65

among all
Big Data Analytics Tools

Find out who the leaders are

Analyst Rating Summary

we're gathering data
89
we're gathering data
83
we're gathering data
88
we're gathering data
86
Show More Show More

Analyst Ratings for Functional Requirements Customize This Data Customize This Data

SAP HANA
H2O.ai
+ Add Product + Add Product
Augmented Analytics Computer Vision And Internet Of Things (IoT) Dashboarding And Data Visualization Data Management Data Preparation Geospatial Visualizations And Analysis Machine Learning Mobile Capabilities Platform Capabilities Reporting 83 88 86 100 65 100 0 57 0 25 50 75 100
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
83%
0%
17%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
75%
0%
25%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
88%
0%
12%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
100%
0%
0%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
90%
10%
0%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
71%
0%
29%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
100%
0%
0%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
0%
0%
100%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
100%
0%
0%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
57%
0%
43%

Analyst Ratings for Technical Requirements Customize This Data Customize This Data

we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
100%
0%
0%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
96%
0%
4%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
100%
0%
0%

User Sentiment Summary

Great User Sentiment 1173 reviews
we're gathering data
86%
of users recommend this product

SAP HANA has a 'great' User Satisfaction Rating of 86% when considering 1173 user reviews from 4 recognized software review sites.

we're gathering data
4.2 (345)
n/a
4.6 (19)
n/a
4.3 (328)
n/a
4.3 (481)
n/a

Awards

we're gathering data

SelectHub research analysts have evaluated H2O.ai and concluded it earns best-in-class honors for Machine Learning.

Machine Learning Award

Synopsis of User Ratings and Reviews

Data Analysis: Around 92% of users who reviewed data analysis said that the tool analyzes and displays insights and trend forecasts of transactional data in real time to enable timely decision-making.
Data Processing: Approximately 91% of the users who discussed data processing said that the tool can query large amounts of data due to its in-memory architecture and data compression algorithm.
Data Integration: Around 87% of the users said that the solution migrates data efficiently from a wide range of SAP and non-SAP systems.
Support: Approximately 87% of the users who discussed support said that they are responsive, and online user communities and knowledge bases assist in faster resolution of issues.
Speed and Performance: Citing the tool’s fast runtime, around 76% of the users said that they can perform on-the-fly calculations at very high speeds.
Show more
Efficient AutoML: Users appreciate H2O.ai's AutoML capabilities, which streamline the machine learning process, making it accessible to a broader audience and saving time on model development.
Scalability: Many users highlight H2O.ai's ability to handle large datasets and scale seamlessly, accommodating the needs of businesses with varying data volumes.
Model Interpretability: H2O.ai's interpretability tools are praised for helping users understand and trust complex machine learning models, particularly in regulated industries.
Open Source Foundation: Users appreciate the open-source nature of H2O.ai, which fosters collaboration, transparency, and a thriving community of users and developers.
Comprehensive Ecosystem: The platform's extensive ecosystem of tools and integrations is a pro, as it allows users to extend and customize their workflows to suit their specific needs.
Advanced Algorithms: H2O.ai's rich library of advanced machine learning algorithms is well-received by users, enabling them to tackle complex problems effectively.
Model Management: Users find the model management capabilities of H2O.ai robust, making it easier to monitor, update, and deploy models for ongoing success.
Flexible Deployment Options: The flexibility to deploy models in various environments, including cloud and on-premises, is seen as a significant advantage by users, aligning with their infrastructure needs.
Support for Diverse Data Sources: Users value H2O.ai's support for a wide range of data sources, enabling them to leverage their entire data ecosystem for machine learning projects.
Time-to-Value: Many users report that H2O.ai accelerates their time-to-value for data-driven initiatives, allowing them to derive insights and achieve results more quickly.
Show more
Pricing: Approximately 80% of the users who mentioned pricing said that the solution’s in-memory architecture demands large amounts of RAM, which adds to the cost.
Functionality: According to around 53% of the users who reviewed functionality, the solution needs to be more flexible and agile to perform complex calculations on large datasets.
Show more
Steep Learning Curve: Some users find H2O.ai challenging to learn, particularly for those new to machine learning, due to its advanced features and concepts.
Resource Intensive: Users with limited computational resources may encounter challenges when working with large datasets or complex models, as it can demand substantial computing power.
Data Quality Dependencies: H2O.ai's effectiveness relies heavily on high-quality, clean data, and users report that poor data quality can impact model performance and accuracy.
Complexity of Interpretation: While the platform offers interpretability tools, users mention that fully understanding highly complex machine learning models can still be challenging.
Integration Efforts: Integrating H2O.ai into existing IT environments can require significant effort and technical expertise, which may be a drawback for some organizations.
Customization Complexity: Extensive customization can be complex, and users with specific use cases may need advanced knowledge of the platform to tailor solutions effectively.
Scalability Management: While H2O.ai is highly scalable, effectively managing scaling processes, particularly for large enterprises, can be complex and may require specialized expertise.
Documentation Gaps: Some users have noted occasional gaps in documentation and support resources, which can hinder troubleshooting and development efforts.
Model Deployment Challenges: Deploying models in production environments, especially in highly regulated industries, can require additional considerations and expertise, which users find challenging.
Algorithm Selection: Choosing the right algorithm for specific use cases can be a hurdle, as it demands a deep understanding of the platform and the nuances of different algorithms.
Show more

SAP HANA is a multi-model database and analytics platform that combines real-time transactional data with predictive analytics and machine learning capabilities to drive business decisions quicker. Most of the users who mentioned analytics said that, with its Online Analytical Processing(OLAP) and Online Transactional Processing(OLTP) capabilities, the tool analyzes data faster with predictive modeling and machine learning. Many users who reviewed data processing said that the tool has a lean data model due to its in-memory architecture and columnar storage capabilities, and, paired with its compression algorithm, can perform calculations on-the-fly on huge volumes of data. In reference to data integration, many users said that the platform connects seamlessly with both SAP and non-SAP systems, such as mapping tools like ArcGIS, to migrate data to a consolidated repository, though quite a few users said that integration with media files and Google APIs is tedious. Most of the users who reviewed support said that they are responsive, and online user communities and documentation help in resolving issues, whereas some users said that the support reps had limited knowledge. A majority of the users who reviewed its speed said that the platform has a fast runtime, though some users said that it requires high-performing hardware infrastructure to do so and that memory management might be tricky with large datasets. The software does have its limitations though. Being in-memory, the tool is RAM-intensive, which can add to the cost of ownership, though some users said that data compression reduces the database size and saves on hardware cost. A majority of the users who reviewed its functionality said that it needs to be more mature in terms of flexibility and agility, though some users said that with easy updates and maintenance, it is a robust solution and increases efficiency and productivity. In summary, SAP HANA serves as a single source of truth for analysis of large volumes of data and uncovering consumer insights through planning, forecasting and drill-down reporting. However, it seems more suited for large organizations with complex data types and analytics workflows because of its costly pricing plans.

Show more

User reviews for H2O.ai offer insights into both its strengths and weaknesses. Many users praise its efficient AutoML capabilities, making machine learning more accessible and saving time in model development. The scalability of H2O.ai is also widely appreciated, accommodating various data volumes for businesses. Users find its model interpretability tools valuable, particularly in regulated industries, for understanding complex models. The platform's open-source foundation fosters collaboration and transparency, drawing positive remarks. Its comprehensive ecosystem and support for advanced algorithms are additional strengths, enabling users to extend and customize their workflows effectively. On the downside, some users highlight a steep learning curve, particularly for newcomers to machine learning. The resource-intensive nature of H2O.ai, especially when dealing with large datasets, can be a limitation for those with limited computational resources. Data quality dependencies impact model performance, and complex model interpretation remains a challenge. Integrating H2O.ai into existing IT environments can be labor-intensive, and extensive customization may demand advanced knowledge. Effective scalability management can also pose complexities. Occasional gaps in documentation and support resources have been noted, affecting troubleshooting and development efforts. Compared to similar products, users see H2O.ai as a robust contender, offering a rich set of features and a vibrant open-source community. However, its learning curve and resource requirements may be factors for consideration. Ultimately, user reviews reflect a mix of praise for H2O.ai's capabilities and challenges faced in mastering its advanced functionalities.

Show more

Screenshots

we're gathering data

Top Alternatives in Big Data Analytics Tools


Alteryx

Azure Synapse Analytics

Dataiku

H2O.ai

IBM Watson Studio

KNIME

Looker Studio

Oracle Analytics Cloud

Qlik Sense

RapidMiner

SageMaker

SAP Analytics Cloud

SAS Viya

Spotfire

Tableau

WE DISTILL IT INTO REAL REQUIREMENTS, COMPARISON REPORTS, PRICE GUIDES and more...

Compare products
Comparison Report
Just drag this link to the bookmark bar.
?
Table settings