MATLAB vs IBM Watson Studio

Last Updated:

Our analysts compared MATLAB vs IBM Watson Studio based on data from our 400+ point analysis of Big Data Analytics Tools, user reviews and our own crowdsourced data from our free software selection platform.

IBM Watson Studio Software Tool

Product Basics

MATLAB is a numerical computing and programming platform that enables users to develop and implement mathematical algorithms, create models and analyze data. Designed for engineers and scientists, it can be used for a range of purposes, including deep learning and machine learning, computational finance, image processing, predictive maintenance, IoT analytics and more. Built around its matrix-based programming language, it can help users run analyses on large data sets as well as design and rigorously test models.

It is available through on-premise installation on Windows and Mac. For eligible licensees, there is also a SaaS version accessible through a web browser. Users can purchase it under a perpetual or annual license, with discounts for academic institutions. For individuals not associated with government agencies, private companies or other organizations, there is a less expensive home license for personal use. Students can purchase a student license for a version designed for coursework and academic research.

Early-stage technology startups can apply for startup-friendly pricing and opportunities.
read more...
IBM Watson Studio is a powerful platform designed to empower organizations in their data science and machine learning endeavors. It serves as a comprehensive hub for data analysis, model development, and collaboration among teams. Key features include advanced analytics tools, AutoAI for automating machine learning tasks, and a collaborative workspace for seamless teamwork. Users benefit from the ability to create, train, and deploy machine learning models within the platform, simplifying the transition to production environments. Watson Studio also offers data visualization tools for effective communication of insights. Its strengths lie in its versatility, collaboration capabilities, and automation, making it a valuable asset for organizations seeking to harness the potential of data-driven decision-making.
read more...
$980 Annually
Get a free price quote
Tailored to your specific needs
$30 Monthly
Get a free price quote
Tailored to your specific needs
Small 
i
Medium 
i
Large 
i
Small 
i
Medium 
i
Large 
i
Windows
Mac
Linux
Android
Chromebook
Windows
Mac
Linux
Android
Chromebook
Cloud
On-Premise
Mobile
Cloud
On-Premise
Mobile

Product Assistance

Documentation
In Person
Live Online
Videos
Webinars
Documentation
In Person
Live Online
Videos
Webinars
Email
Phone
Chat
FAQ
Forum
Knowledge Base
24/7 Live Support
Email
Phone
Chat
FAQ
Forum
Knowledge Base
24/7 Live Support

Product Insights

  • Get Results Faster: Obtain quicker results through contextual hints, automatic code generation and a fully integrated debugger. Spend less time on programming and troubleshooting.
  • Analyze with Less Code: Teach the platform to automatically generate code to reproduce work and save time, as well as perform tasks such as training machine learning models or labeling data. 
  • Add-Ons For Every Application: Customize and extend the functionality of the core platform through the MATLAB family of add-on products to address specific business needs.
  • Scale Up to Big Data: Scale analyses to process big data by running on clusters, GPUs and clouds. Speed up computation on large data sets without needing to rewrite code or learn big data programming. 
  • Updates and Upgrades: Runs code more than twice as fast as before, due to continual updates and new features on the platform, as well as twice-yearly new releases.
  • Access Anywhere: Sign in to the online platform from any standard web browser, without needing to download and install the application on new machines. Syncs files between computers and the online platform via cloud storage and integration, eliminating the need for manual upload or download. 
  • Enhanced Collaboration: Collaborate by sharing scripts and files directly online or publishing to the web via interactive controls. Easily package or translate analysis for other platforms, or document work and export it to reports for sharing.
  • Free Trial: Try it hands-on with a free 30-day trial. Students whose schools have a campus license can access a free copy of the software without the 30-day trial limitation.
read more...
  • Advanced Data Analytics: IBM Watson Studio empowers users to perform advanced data analytics and gain deeper insights from their data. It offers a wide range of tools and capabilities for data exploration, transformation, and analysis, enabling data-driven decision-making.
  • Collaborative Environment: The platform provides a collaborative environment where data scientists, analysts, and stakeholders can work together seamlessly. It facilitates team collaboration, version control, and sharing of insights, fostering a culture of data-driven collaboration.
  • Machine Learning Capabilities: IBM Watson Studio offers robust machine learning capabilities, allowing users to build, train, and deploy machine learning models. This benefit enables organizations to leverage predictive analytics for a variety of applications, from fraud detection to customer churn prediction.
  • Model Deployment and Monitoring: Users can easily deploy and monitor machine learning models within the platform. This streamlines the process of putting models into production and ensures they continue to perform effectively over time.
  • Data Visualization: The platform offers data visualization tools that help users create compelling and informative visualizations. Data can be transformed into clear, interactive charts and graphs, making it easier to communicate insights to stakeholders.
  • Integration Capabilities: IBM Watson Studio integrates with a wide range of data sources, databases, and other IBM services. This flexibility enables organizations to work with their existing data ecosystem and technology stack, enhancing efficiency and productivity.
  • AutoAI: The AutoAI feature automates the machine learning pipeline, making it accessible to users with varying levels of expertise. It simplifies model development and accelerates the time-to-value for AI projects.
  • Scalability: IBM Watson Studio is designed to handle large-scale data projects. It scales to accommodate growing datasets and computational needs, ensuring that it remains a reliable solution as organizations expand their analytics initiatives.
  • Security and Compliance: The platform prioritizes data security and compliance with industry standards and regulations. It includes features like data access controls and audit trails to safeguard sensitive information.
  • Cost-Efficiency: By providing a comprehensive suite of data science and machine learning tools in one platform, IBM Watson Studio helps organizations optimize their resources and reduce the cost of managing multiple separate tools and platforms.
read more...
  • Data Import: Import and access a variety of data types, including text files, spreadsheets, images, audio, video, scientific data formats, IoT data, large data sets and more. 
  • Algorithm Development: Develop algorithms with thousands of core mathematical, engineering and scientific functions and tools for debugging, implementation and optimization. 
  • Automate with Machine Learning: Leverage interactive apps to see how algorithms work with data and then tweak to get the desired results. Then, automatically generate a program to reproduce or automate workflows. 
  • Live Editor: Build functions and generate code, creating scripts that can be enhanced with formatting through an interactive editor. Compile these scripts and results into an executable notebook. Explore parameters and immediately see the results, saving time.
  • Data Analysis: Analyze large data sets and big data in a multitude of ways through thousands of prebuilt functions for statistical analysis, machine learning and signal processing.
  • Data Visualization: Turn data into graphics with prebuilt 2D and 3D plots, including line plots, histograms, bar graphs, scatter plots, pie charts, word clouds, maps, polar plots, vector fields and animations.
  • Mathematics: Perform mathematical calculations via a vast library of mathematical functions, including linear algebra, statistics, Fourier analysis, numerical integration, differential equations and more.
  • Modeling: Supports model-based design, multi-domain simulation and automatic code generation via integration with another product from the same vendor, Simulink. Helps in numeric and symbolic modeling and provides mathematical tools like curve fitting, statistics, ODE and PDE solving, calculus and more.
  • Teach with Live Scripts: Build live scripts with its code to let students explore concepts and learn on their own. Create engaging lectures that walk students through explanations, math equations and results, one section at a time. Modify code on the fly to demonstrate how to use math to solve complex problems.
  • App Designer: Create, package and share professional desktop and web apps without needing all the technical know-how of app development. Lay out a graphical user interface through drag-and-drop tools and write the coding for the app’s behavior with an integrated editor and code analyzer that warns about errors in code as it’s written.
  • Community Gallery: See examples from the community on how to display and manipulate data by visiting the plot gallery and live script gallery on the vendor’s website.
  • Programming Integrations: Supports interfacing with other programming languages. Use the platform from within another programming environment without starting a new desktop session through engine APIs that support C/C++, Fortran, Java, Python and more. Call functions and objects from other libraries, including C, C++, Java, Python, .NET, COM objects and more from within the platform. Convert algorithms written in its code to C/C++.
  • Add-Ons: Utilize toolboxes and specialized solutions for fields such as math and optimizations, statistics and data science, code generation, application deployment, database access and reporting. These toolboxes are professionally built, rigorously tested and fully documented. Integrate automated reporting into the platform with richly-formatted custom reports in PDF, Word and HTML formats. 
  • MATLAB Online: Access the platform from any web browser through cloud-based services without downloading and installing the software. 
  • MATLAB Drive: Store, manage and share files from the cloud across devices and work with files from anywhere.
  • Mobile App: Learn and teach through mobile apps for iOS and Android devices. Connect to sessions, and acquire sensor data to analyze and capture images and videos.
read more...
  • Data Preparation Tools: IBM Watson Studio offers a range of data preparation tools that enable users to clean, transform, and shape data for analysis. These tools simplify the data preprocessing stage, ensuring that data is in the right format for analysis.
  • Collaborative Environment: The platform provides a collaborative workspace where data scientists, analysts, and business stakeholders can work together. It supports version control, project sharing, and real-time collaboration, enhancing teamwork and knowledge sharing.
  • AutoAI: AutoAI is a feature that automates the machine learning pipeline. It automates tasks such as feature engineering, model selection, and hyperparameter tuning, making it easier for users to build and deploy machine learning models without extensive manual work.
  • Model Building and Training: IBM Watson Studio includes tools for building and training machine learning models. Users can access a wide range of algorithms and frameworks, allowing them to create predictive models for various applications.
  • Data Visualization: The platform offers data visualization tools that help users create interactive charts and graphs. These visualizations make it easy to communicate insights and patterns in the data to both technical and non-technical stakeholders.
  • Deployment and Monitoring: Users can deploy machine learning models into production environments directly from the platform. Additionally, IBM Watson Studio provides monitoring capabilities to track model performance and make adjustments as needed.
  • Integration: The platform offers seamless integration with various data sources, databases, and cloud services. This ensures that users can access and analyze data from a wide range of systems, enhancing data availability and flexibility.
  • Security and Compliance: IBM Watson Studio prioritizes data security and compliance. It includes features like access controls, encryption, and audit trails to protect sensitive data and maintain compliance with industry regulations.
  • Customization and Extensibility: Users can customize and extend the platform's functionality using open APIs and integration options. This flexibility allows organizations to tailor IBM Watson Studio to their specific needs and workflows.
  • AutoML: AutoML capabilities automate the machine learning process, making it accessible to users with varying levels of expertise. It simplifies model development and accelerates the time-to-value for AI and machine learning projects.
read more...

Product Ranking

#11

among all
Big Data Analytics Tools

#54

among all
Big Data Analytics Tools

Find out who the leaders are

Analyst Rating Summary

we're gathering data
92
we're gathering data
94
we're gathering data
89
we're gathering data
100
Show More Show More

Analyst Ratings for Functional Requirements Customize This Data Customize This Data

MATLAB
IBM Watson Studio
+ Add Product + Add Product
Augmented Analytics Computer Vision And Internet Of Things (IoT) Dashboarding And Data Visualization Data Management Data Preparation Geospatial Visualizations And Analysis Machine Learning Mobile Capabilities Platform Capabilities Reporting 94 89 100 100 86 95 18 86 0 25 50 75 100
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
92%
4%
4%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
75%
13%
12%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
100%
0%
0%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
100%
0%
0%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
100%
0%
0%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
86%
0%
14%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
93%
3%
4%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
13%
0%
87%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
100%
0%
0%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
86%
0%
14%

Analyst Ratings for Technical Requirements Customize This Data Customize This Data

we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
86%
0%
14%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
86%
0%
14%
we're gathering data
N/A
we're gathering data
N/A
we're gathering data
N/A
100%
0%
0%

User Sentiment Summary

Excellent User Sentiment 4535 reviews
we're gathering data
92%
of users recommend this product

MATLAB has a 'excellent' User Satisfaction Rating of 92% when considering 4535 user reviews from 5 recognized software review sites.

we're gathering data
4.5 (599)
n/a
4.6 (1808)
n/a
4.6 (1570)
n/a
4.6 (401)
n/a
4.3 (157)
n/a

Awards

MATLAB stands above the rest by achieving an ‘Excellent’ rating as a User Favorite.

User Favorite Award

we're gathering data

Synopsis of User Ratings and Reviews

Service and Support: All users who mentioned support said that online community forums are supportive in helping them leverage the platform to its maximum potential.
Data Processing: Around 92% of users who discussed its data processing capabilities said that the solution helps to simulate and visualize complex mathematical models in an intuitive manner.
Data Analysis: According to 92% of users who reviewed data analysis, the platform, with multiple built-in packages, is useful in exploring data, creating machine learning models and predictive analysis.
Functionality: Citing a range of pre-loaded functions and algorithms, approximately 88% of users who reviewed functionality said that the solution is a powerful tool with a rich feature set and strong computing abilities.
Ease of Use: Reviewing ease of using the tool, approximately 60% of users said that, with detailed documentation being readily available, minimal coding experience is necessary to create and combine scripts.
Show more
Advanced Analytics: Users appreciate the platform's robust data analytics and modeling capabilities, allowing them to extract meaningful insights from their data.
Collaboration: Watson Studio's collaborative environment is well-received, enabling teams to work together effectively on data science projects.
AutoAI: Users value the AutoAI feature, which automates machine learning tasks and accelerates model development, making it accessible to users with varying skill levels.
Data Visualization: The platform's data visualization tools help users create informative visualizations, simplifying the communication of insights to stakeholders.
Model Deployment: Users find it convenient to deploy machine learning models within the platform, streamlining the process of putting models into production.
Integration: Watson Studio's integration capabilities with various data sources and services receive praise for their flexibility and ease of use.
Security: Users appreciate the platform's robust security features, ensuring the protection of sensitive data and compliance with regulations.
Customization: Watson Studio's customization options allow users to tailor the platform to their specific needs and workflows, enhancing its adaptability.
Community Support: Many users benefit from the active and helpful user community, which provides resources and assistance for problem-solving and knowledge sharing.
Documentation: IBM's comprehensive documentation is seen as a valuable resource, aiding users in effectively utilizing the platform's features.
Show more
Performance and Speed: Around 91% of users who reviewed speed said that the platform is resource-hungry in terms of power and space and slows down when performing complex computations.
Cost: Citing licensing costs, approximately 81% of users said that the software is expensive for individual users.
Show more
Complexity: Some users find the platform complex, especially for beginners in data science, which may require a steep learning curve.
Resource Demands: Handling large datasets and complex analyses can be resource-intensive, posing challenges for organizations with limited computational resources.
Data Quality Dependency: The effectiveness of Watson Studio relies heavily on the quality and cleanliness of input data. Inaccurate or incomplete data can impact analysis outcomes.
Interpretability Challenges: Highly complex machine learning models can be challenging to interpret fully, especially in regulated industries where interpretability is crucial.
Integration Efforts: Integrating Watson Studio into existing IT environments can require significant effort, particularly for organizations with complex tech stacks.
Customization Complexity: Extensive customization may demand advanced knowledge and development skills, potentially limiting accessibility for some users.
Scalability Management: While scalable, effectively managing scaling processes, especially for large enterprises, can be complex and require specialized expertise.
Documentation Gaps: Users have reported occasional gaps in documentation and support resources, which can hinder troubleshooting and development efforts.
Model Deployment Challenges: Deploying models in production environments, particularly in highly regulated industries, can require additional considerations and expertise, posing challenges.
Algorithm Selection: Choosing the right algorithm for specific use cases can be challenging, demanding a deep understanding of the platform and algorithm nuances.
Show more

MATLAB is a computing and programming tool that combines the power of functions and algorithms with data integration, modeling and visualization for predictive business data analysis. Users perform complex computations on data sets that the platform ingests from a multitude of data sources to glean business-specific metrics. Citing online communities, all users who reviewed support said that the tool is accessible to beginners, while providing enough depth for advanced users, though some said that the coding syntax could be daunting for non-technical users initially. Around 92% of users who reviewed its analytical capabilities said that the platform provides a wide range of built-in packages to provide out-of-the-box data analysis solutions. With its minimal scripting, many users who discussed data processing said that they could simulate complex mathematical functions to visualize complex data models. Reviewing its functionality, many users said that its rich library and design makes it possible to write powerful programs easily. A majority of users who discussed its performance said that the platform consumes a lot of power and space and slows down when performing complex computations, possibly because updates, though frequent, do not include optimization for older features. Many users who reviewed the cost said that individual user licenses are expensive, and buying additional libraries adds to the cost since many of these have interlinking dependencies, though some users said that the platform provides value for money. In summary, MATLAB is a programming solution that leverages machine learning for data collection and complex computations for users to create data models and visualize enterprise metrics for predictive analysis.

Show more

User reviews of IBM Watson Studio provide valuable insights into its strengths and weaknesses. The platform is lauded for its advanced analytics capabilities, allowing users to conduct in-depth data analysis and modeling. Collaboration features are appreciated for enabling effective teamwork, fostering knowledge sharing among data scientists, analysts, and stakeholders. AutoAI is a standout feature, automating machine learning tasks and making it accessible to users with varying skill levels. Users find the data visualization tools helpful for creating compelling visualizations that communicate insights effectively. Model deployment within the platform simplifies the transition from development to production environments. On the downside, complexity is cited as a drawback, particularly for newcomers to data science. Resource demands for handling large datasets can be challenging for organizations with limited computational resources. The platform's effectiveness is highly dependent on data quality, which can pose issues with inaccurate or incomplete data. Some users note challenges in interpreting highly complex machine learning models, especially in regulated industries where model transparency is crucial. Integration and customization efforts may be complex and require advanced expertise. In comparison to similar products, IBM Watson Studio is often seen as a robust contender, offering a comprehensive suite of data science and machine learning tools. However, the learning curve and resource requirements may be factors for consideration. User reviews reflect a mix of praise for its capabilities and challenges in mastering its advanced functionalities.

Show more

Screenshots

we're gathering data

Top Alternatives in Big Data Analytics Tools


Alteryx

Azure Synapse Analytics

Dataiku

H2O.ai

IBM Watson Studio

KNIME

Looker Studio

Oracle Analytics Cloud

Qlik Sense

RapidMiner

SageMaker

SAP Analytics Cloud

SAS Viya

Spotfire

Tableau

WE DISTILL IT INTO REAL REQUIREMENTS, COMPARISON REPORTS, PRICE GUIDES and more...

Compare products
Comparison Report
Just drag this link to the bookmark bar.
?
Table settings