Our analysts compared Hadoop vs SAP HANA based on data from our 400+ point analysis of Big Data Analytics Tools, user reviews and our own crowdsourced data from our free software selection platform.
among all Big Data Analytics Tools
Hadoop has a 'great' User Satisfaction Rating of 85% when considering 474 user reviews from 3 recognized software review sites.
SAP HANA has a 'great' User Satisfaction Rating of 86% when considering 1173 user reviews from 4 recognized software review sites.
Hadoop has been making waves in the Big Data Analytics scene, and for good reason. Users rave about its ability to scale like a champ, handling massive datasets that would make other platforms sweat. Its flexibility is another major plus, allowing it to adapt to different data formats and processing needs without breaking a sweat. And let's not forget about reliability – Hadoop is built to keep on chugging even when things get rough. However, it's not all sunshine and rainbows. Some users find Hadoop's complexity a bit daunting, especially if they're new to the Big Data game. The learning curve can be steep, so be prepared to invest some time and effort to get the most out of it. So, who's the ideal candidate for Hadoop? Companies dealing with mountains of data, that's who. If you're in industries like finance, healthcare, or retail, where data is king, Hadoop can be your secret weapon. It's perfect for tasks like analyzing customer behavior, detecting fraud, or predicting market trends. Just remember, Hadoop is a powerful tool, but it's not a magic wand. You'll need a skilled team to set it up and manage it effectively. But if you're willing to put in the work, Hadoop can help you unlock the true potential of your data.
SAP HANA is a multi-model database and analytics platform that combines real-time transactional data with predictive analytics and machine learning capabilities to drive business decisions quicker. Most of the users who mentioned analytics said that, with its Online Analytical Processing(OLAP) and Online Transactional Processing(OLTP) capabilities, the tool analyzes data faster with predictive modeling and machine learning. Many users who reviewed data processing said that the tool has a lean data model due to its in-memory architecture and columnar storage capabilities, and, paired with its compression algorithm, can perform calculations on-the-fly on huge volumes of data. In reference to data integration, many users said that the platform connects seamlessly with both SAP and non-SAP systems, such as mapping tools like ArcGIS, to migrate data to a consolidated repository, though quite a few users said that integration with media files and Google APIs is tedious. Most of the users who reviewed support said that they are responsive, and online user communities and documentation help in resolving issues, whereas some users said that the support reps had limited knowledge. A majority of the users who reviewed its speed said that the platform has a fast runtime, though some users said that it requires high-performing hardware infrastructure to do so and that memory management might be tricky with large datasets. The software does have its limitations though. Being in-memory, the tool is RAM-intensive, which can add to the cost of ownership, though some users said that data compression reduces the database size and saves on hardware cost. A majority of the users who reviewed its functionality said that it needs to be more mature in terms of flexibility and agility, though some users said that with easy updates and maintenance, it is a robust solution and increases efficiency and productivity. In summary, SAP HANA serves as a single source of truth for analysis of large volumes of data and uncovering consumer insights through planning, forecasting and drill-down reporting. However, it seems more suited for large organizations with complex data types and analytics workflows because of its costly pricing plans.
WE DISTILL IT INTO REAL REQUIREMENTS, COMPARISON REPORTS, PRICE GUIDES and more...