Our analysts compared Dataiku vs SageMaker based on data from our 400+ point analysis of Big Data Analytics Tools, user reviews and our own crowdsourced data from our free software selection platform.
Analyst Rating
User Sentiment
among all Big Data Analytics Tools
Dataiku has a 'excellent' User Satisfaction Rating of 91% when considering 7 user reviews from 1 recognized software review sites.
SelectHub research analysts have evaluated Dataiku and concluded it earns best-in-class honors for Augmented Analytics. Dataiku stands above the rest by achieving an ‘Excellent’ rating as a User Favorite.
User reviews for Dataiku reveal a mixed sentiment, with notable strengths and weaknesses. Users appreciate Dataiku's comprehensive feature set, user-friendly interface, and its effectiveness in facilitating collaboration among diverse teams. Scalability is another advantage, making it suitable for various organizational sizes. AutoML capabilities and real-time insights are well-received for their accessibility and timeliness. However, several users express concerns about a steep learning curve, especially for newcomers to data science. The platform's resource-intensive nature can be challenging, and the cost of licensing may be a barrier for smaller organizations. Some users find limitations in the free community edition and face integration challenges with legacy systems or non-standard data sources. Data quality dependency and customization complexity are other reported cons. Dataiku is often compared to similar products in a competitive market, and users stress the importance of evaluating it against specific needs and budgets. Security-conscious organizations may need additional measures when handling sensitive data. Despite its limitations, Dataiku maintains a strong user base due to its robust feature set and collaborative capabilities, enabling data-driven decision-making in various industries.
User reviews of Amazon SageMaker reveal a platform appreciated for its robust feature set, scalability, and cost-efficiency. Many users find its comprehensive tools for data preprocessing, model training, deployment, and monitoring to be a significant strength. Scalability is another key advantage, with SageMaker accommodating both small-scale experiments and large-scale production workloads effectively. However, some users point out that SageMaker has a steep learning curve, particularly for beginners, and cost management can be challenging, especially during extensive model training. The platform's dependency on the broader AWS ecosystem can lead to vendor lock-in, which may not be ideal for organizations seeking flexibility. SageMaker's AutoML capabilities, such as Autopilot, are praised for automating complex tasks, but some advanced users note limitations in customization. Additionally, while designed for real-time inference, it may not be optimized for batch processing or offline use cases. In comparison to similar products, SageMaker stands out for its deep integration with AWS services, making it a preferred choice for those already within the AWS ecosystem. However, the learning curve and potential cost challenges are factors that users weigh against its benefits. The platform's active community support and extensive documentation receive positive mentions, contributing to a smoother user experience. Overall, Amazon SageMaker is a powerful tool for machine learning but requires careful consideration of its complexities and potential cost implications.
WE DISTILL IT INTO REAL REQUIREMENTS, COMPARISON REPORTS, PRICE GUIDES and more...